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Organoboron compounds have had a profound impact on organic Table 1.  Epoxidation of Potassium Organotrifluoroborates with
synthesig. Their unique reactivity has made them among the most Dimethyldioxirane (0.05 M Solution in Acetone)
versatile organometallic intermediates for the construction of organic 1.2 equi 1)
molecule€. In many synthetic methods based on organoborons, R/\(BF3K A (1-2equiv) R/ﬂ/BFsK
3 R

R
oxidation of the carborboron bond has been used as a key step

rt R’
for further or final transformations. However, given the power of 4

modern oxidations to incorporate functionality selectively into  entry organotrifluoroborate product % isolated yield®
organic substrate’sithe incompatibility of most oxidants with o
organoboron compountisan be regarded as a significant limitation T Gy -BFK 3a CeH, 7/<1/BF3K 4a 85
because it severely restricts the ability to modify the organic moiety o
while retaining the valuable carbetboron bond. 2 oy XBFK 3b pr L-BF:K 4b 70°
There are few reports of organic functionality being oxidized in o
the presence of organoboron compounds wherein the catimoon 3 Cl X BFK 3¢ cCl_<[BFK 4c 71
bond remains intaétIn this communication, we describe our initial
efforts toward oxidative transformations with potassium organo- 4 ﬁ/BFSK 3d Q;BF K 4d 80
trifluoroborates (RBEK) that lead to interesting materials in which Me Me :
the carbon-boron bond is retained. o
Organotrifluoroborate salts have emerged as a new class of air- > & " "BFK 3 l>\/\BF3K 6 0

stable boron derivatives, facile to prepare in high yields and
purities] easy to handle, and feasible to utilize in a number of useful  a - 9504 conversion byH NMR. P Reaction was performed at78 °C.
synthetic processes (e.g., Suzuki reactidirhodium-catalyzed 1,4-

additions;® and allylation of aldehydéy. formation of the epoxide and the retention of the trifluoroborate
As part of an ongomg program in organoporon re_sea_rwle, moiety!? The potassium epoxytrifluoroborat& was obtained as

were pleased to discover that the conventional oxidation of a 4 \ynite solid completely stable in the air.

thioether to a sulfone wittm-CPBA could be performed in the This epoxidation has proved to be efficient with an array of

presence of a pendant alkyltrifluoroborate. Thus, potassium 3- yoiassium alkenyltrifluoroboratés. The reaction of thetrans
phenylthiopropyltrifluoroboratel'? was treated with 2 equiv of g vitrifluoroborate3b occurs at—78 °C almost instantaneously
m-CPBA in CHCI, at room temperature, and aftd h the (entry 2). Other partners, such asans3-chloropropenyl tri-
ph_enylsuIfonylpropyltnfluorpboraté preaplta.ted from the re_actlon fluoroborate3c (entry 3) or 1,1-disubstituted olefiad (entry 4),
mixture (eq 1). Thus, the trifluoroborate moiety not only withstood  efficiently afford the desired oxiranyitrifluoroborates. All of the

the oxidative conditions of the peracid, but the acidic conditions rqqycts were isolated as air-stable white solids. The stability of

of the carboxylic acid byproduct as well. the epoxytrifluoroborates is particularly amazing, given their
cPBA structural analogy to oxiranyl aniod%which are known to be
m- . .
Phs” > TBFK — Phos” > erk () extraordinarily upstable. T.he.CO\./aIent nature of theE{]gond thus
1 CHCl, it,1h 2 prevents the detrimentatelimination process characteristic of most
70% oxiranyl anions. Furthermore, the strong-B bonds of the tetra-

coordinate trifluoroborate not only provide mechanistic resistance
In view of the unprecedented stability of the potassium alkyl- against oxidation and protonolysis reactions normally associated
trifluoroborate with peracidsye pursued the possibility that related ~ with organoboranes but clearly prevent the well-recognizécns-
boron derivatives might also be stable under other oxidative fer reaction at the labile epoxide as wefl.
conditions. One of the most studied oxidation processes is the In further studies, we have examined the epoxidation process
epoxidation reactio® Indeed, oxiranes are widely utilized as with a potassiunw-alkenyltrifluoroborate. Exposure of potassium
versatile synthetic intermediates, and the epoxide functional group 3-butenyltrifluoroborat&!? (easily obtained from the corresponding

is also found in a number of interesting natural prodétsmong Grignard derivativeéf with dimethyldioxirane gave the desired
the epoxidation reagents that we have investig&tetimethyl- potassium epoxyethyl trifluoroborain 70% yield after crystal-

dioxirané® is uniquely effective. We were delighted to find that lization (entry 5).

the reaction of potassiutmans-1-dec-1-enyltrifluoroborafé 3awith Suzuki-Miyaura reactior® wherein an epoxide resides within
1.2 equiv of dimethyldioxirane at room temperature led to clean the same coupling partner as the boron méfegye rare and not
and quantitative generation of the epoxytrifluoroboréégTable well documented? Thus, with the potassium oxiranylethyltri-

1, entry 1) H, 13C, 19F, and!'B spectroscopy corroborated the fluoroborates in hand we conducted a cross-coupling reaction with
11148 = J. AM. CHEM. SOC. 2003, 125,11148—11149 10.1021/ja0351140 CCC: $25.00 © 2003 American Chemical Society
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Scheme 1

BrOCN 7

CN
Pd Cl,(dppf)-CH,Cl, (9%) oH
Cs,CO, (3 equiv), reflux, 8 h 2
THF:H,O (10:1) OH % vi
%BFSK ] 8, 74% yield
: 7
CN
6 Pd Cl,(dppf)-CH,Cl, (9%) o
Cs,CO; (3 equiv), reflux, 3d 3
THF:H,0 (40:1)
9, 80% yield

4-cyanophenyl bromider as the electrophile. The previously
reported conditions found to be optimal for Suzuki coupling of
potassium alkyltrifluoroborat€s[PdCh(dppf)CH,Cl, (9 mol %),
CsCO; (3 equiv) as base, heated at reflux in THEH(10:1)]
afforded the 4-cyanophenyl-1,2-butanedatith a 74% yield after
column chromatography. Although this type of cross-coupling/ring-
opening process is of interest, more importantly we could perform
the desired Suzuki reaction and retain the epoxide by simply
decreasing the amount of the water in the solvent mixture (THF:
H,0) to a 40:1 ratio, isolating the purified epoxyethylaryl compound
9in 80% yield (Scheme 1).

In summary, we have found that potassium organotrifluoroborates
possess a reactivity that is complementary to other organoboron
compounds, permitting olefin epoxidation with dimethyldioxirane
with concomitant retention of the carbeboron bond. This work
thus represents a significant expansion in the chemistry of organo-
boron compounds. We have described the first potassiyn
epoxytrifluoroborates, compounds that could have interesting
reactivity in analogy to the chemistry of oxiranyl anions. In addition,
we have successfully accomplished the first well-documented
B-alkyl Suzuki-Miyaura cross-coupling reaction with an epoxy-
alkyltrifluoroborate derivative. Studies directed toward the use of
o,5-epoxytrifluoroborates as oxiranyl anion equivalents as well as
the exploration of other oxidative processes of organotrifluoro-
borates are under investigation.
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