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Organoboron compounds have had a profound impact on organic
synthesis.1 Their unique reactivity has made them among the most
versatile organometallic intermediates for the construction of organic
molecules.2 In many synthetic methods based on organoborons,
oxidation of the carbon-boron bond3 has been used as a key step
for further or final transformations. However, given the power of
modern oxidations to incorporate functionality selectively into
organic substrates,4 the incompatibility of most oxidants with
organoboron compounds5 can be regarded as a significant limitation
because it severely restricts the ability to modify the organic moiety
while retaining the valuable carbon-boron bond.

There are few reports of organic functionality being oxidized in
the presence of organoboron compounds wherein the carbon-boron
bond remains intact.6 In this communication, we describe our initial
efforts toward oxidative transformations with potassium organo-
trifluoroborates (RBF3K) that lead to interesting materials in which
the carbon-boron bond is retained.

Organotrifluoroborate salts have emerged as a new class of air-
stable boron derivatives, facile to prepare in high yields and
purities,7 easy to handle, and feasible to utilize in a number of useful
synthetic processes (e.g., Suzuki reactions,8,9 rhodium-catalyzed 1,4-
additions,10 and allylation of aldehydes11).

As part of an ongoing program in organoboron research,9 we
were pleased to discover that the conventional oxidation of a
thioether to a sulfone withm-CPBA could be performed in the
presence of a pendant alkyltrifluoroborate. Thus, potassium 3-
phenylthiopropyltrifluoroborate112 was treated with 2 equiv of
m-CPBA in CH2Cl2 at room temperature, and after 1 h the
phenylsulfonylpropyltrifluoroborate2 precipitated from the reaction
mixture (eq 1). Thus, the trifluoroborate moiety not only withstood
the oxidative conditions of the peracid, but the acidic conditions
of the carboxylic acid byproduct as well.

In view of the unprecedented stability of the potassium alkyl-
trifluoroborate with peracids,5 we pursued the possibility that related
boron derivatives might also be stable under other oxidative
conditions. One of the most studied oxidation processes is the
epoxidation reaction.13 Indeed, oxiranes are widely utilized as
versatile synthetic intermediates, and the epoxide functional group
is also found in a number of interesting natural products.14 Among
the epoxidation reagents that we have investigated,15 dimethyl-
dioxirane16 is uniquely effective. We were delighted to find that
the reaction of potassiumtrans-1-dec-1-enyltrifluoroborate9c 3awith
1.2 equiv of dimethyldioxirane at room temperature led to clean
and quantitative generation of the epoxytrifluoroborate4a (Table
1, entry 1).17 1H, 13C, 19F, and11B spectroscopy corroborated the

formation of the epoxide and the retention of the trifluoroborate
moiety.12 The potassium epoxytrifluoroborate4a was obtained as
a white solid, completely stable in the air.

This epoxidation has proved to be efficient with an array of
potassium alkenyltrifluoroborates.9c The reaction of thetrans-
styryltrifluoroborate3b occurs at-78 °C almost instantaneously
(entry 2). Other partners, such astrans-3-chloropropenyl tri-
fluoroborate3c (entry 3) or 1,1-disubstituted olefin3d (entry 4),
efficiently afford the desired oxiranyltrifluoroborates. All of the
products were isolated as air-stable white solids. The stability of
the epoxytrifluoroborates is particularly amazing, given their
structural analogy to oxiranyl anions,18 which are known to be
extraordinarily unstable. The covalent nature of the C-B bond thus
prevents the detrimentalR-elimination process characteristic of most
oxiranyl anions. Furthermore, the strong B-F bonds of the tetra-
coordinate trifluoroborate not only provide mechanistic resistance
against oxidation and protonolysis reactions normally associated
with organoboranes but clearly prevent the well-recognizedR-trans-
fer reaction at the labile epoxide as well.1,2

In further studies, we have examined the epoxidation process
with a potassiumω-alkenyltrifluoroborate. Exposure of potassium
3-butenyltrifluoroborate512 (easily obtained from the corresponding
Grignard derivative)19 with dimethyldioxirane gave the desired
potassium epoxyethyl trifluoroborate6 in 70% yield after crystal-
lization (entry 5).

Suzuki-Miyaura reactions20 wherein an epoxide resides within
the same coupling partner as the boron moiety21 are rare and not
well documented.22 Thus, with the potassium oxiranylethyltri-
fluoroborate6 in hand we conducted a cross-coupling reaction with

Table 1. Epoxidation of Potassium Organotrifluoroborates with
Dimethyldioxirane (0.05 M Solution in Acetone)

a >95% conversion by1H NMR. b Reaction was performed at-78 °C.
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4-cyanophenyl bromide7 as the electrophile. The previously
reported conditions found to be optimal for Suzuki coupling of
potassium alkyltrifluoroborates9a [PdCl2(dppf)‚CH2Cl2 (9 mol %),
Cs2CO3 (3 equiv) as base, heated at reflux in THF:H2O (10:1)]
afforded the 4-cyanophenyl-1,2-butanediol8 with a 74% yield after
column chromatography. Although this type of cross-coupling/ring-
opening process is of interest, more importantly we could perform
the desired Suzuki reaction and retain the epoxide by simply
decreasing the amount of the water in the solvent mixture (THF:
H2O) to a 40:1 ratio, isolating the purified epoxyethylaryl compound
9 in 80% yield (Scheme 1).

In summary, we have found that potassium organotrifluoroborates
possess a reactivity that is complementary to other organoboron
compounds, permitting olefin epoxidation with dimethyldioxirane
with concomitant retention of the carbon-boron bond. This work
thus represents a significant expansion in the chemistry of organo-
boron compounds. We have described the first potassiumR,â-
epoxytrifluoroborates, compounds that could have interesting
reactivity in analogy to the chemistry of oxiranyl anions. In addition,
we have successfully accomplished the first well-documented
B-alkyl Suzuki-Miyaura cross-coupling reaction with an epoxy-
alkyltrifluoroborate derivative. Studies directed toward the use of
R,â-epoxytrifluoroborates as oxiranyl anion equivalents as well as
the exploration of other oxidative processes of organotrifluoro-
borates are under investigation.
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